图11 LCL 谐振式变换电路
软开关:
依然参照图10。外部有源开关Qh在流过电感的电流达到0之前被关断(有效导通时间小于半个周期),电流被迫从输出结点处流出,最初将Cos上的电荷放掉,然后跨过电压阈值时的电压会通过二极管DL。在很短的时间(=300ns)之后,当QL的漏源电压接近 0时,固有的栅驱动器将被激活,并处在导通状态。同样的现象将在第二个半周期出现,关断导通的QL会产生输出模压电感槽路结点的交换,以使能量从Lres传到电容Cos的核,结果使上面二极管DH激活。
图12 软开关 图13 LLC谐振电路
传输的上升沿和下降沿可以被认为是上面定义的基本谐振部分,在图12中可以观察到输出结点处交换的正弦波形部分。用 这种方法工作可以是零电压开关,改善了系统的噪声干扰,因此,惊人的减小了开关损耗。为了工作在软开关状态,必须强制栅关断在电流流入负载之前,令其达到零电压或让它的磁环电感器极性反转,这可以很容易实现,需要很仔细,以便不使输出结点断开。
基本的谐振以及组成的软开关工作才是谐振变换器的实质,而没有包含在能量调整中。
为调整率改变频率。
由于软开关条件可以保证,让我们进行谐振电路的描述,本电路允许用 改变开关频率来控制输出。谐振路径是固有的电路。Lres+Lmag//Load+Cres(参见图13),它的谐振系用改变频率来调整输出到负载的能量。负载电阻(并联于磁化线圈电感)包括负载在二次侧折算到初级的负载。现在,我们必须考虑负载会有很大的变化(极限是短路和开路),另外,在实际的转换器中(图14),负载包括一个整流器部分和输出滤波器。因此,即使在单周期极限,负载也有很大的变化。Lmag可以看作在二极管导通期间与一个很低的阻抗并联,也可以看作在二极管关断期间与很高的阻抗并联(亦即在二极管阳极在降到低于输出结点 的瞬时电压)。
图14 简化的实际变换器
和以上论述相联,我们可功率电感器以看到电路处在多谐状态的路径,也即是图15中描述的各个曲线,它可以监测到作为频率函数的导 纳变化趋势,此是为了对应不同的阻抗负载。这里有两种独立的 谐振峰值。第一个峰在频率低段时磁化电感是固有的(和Lext串连,如果只接一个)这是负载开路的情况。第二个谐振峰取决于串联电感Lsense(在负载非常重或整流器正在导通的情况下)。两种谐振均在能量传输到负载及其控制上起作用。我们可以开始讨论,假设磁化电感值Lmag太高,以至于它的电流对于我们感兴趣的频率范围内可以忽略不计。在这种假设下,很明显,最大电流将出现在F02谐振峰上。在低于F02谐振峰以下的频率时就不会谐振式工作。为了不失去零电压开关,也因为能量传输到负载的时间不能太长,从而为此增加或降低频率。在实际中,对于实际的变压器,其磁化电感不能被忽略(它的电感值不会太高)。无论如何,可以控制它的值以便让其工作在低于F02峰的开关频率下。
图 15 多谐振
励磁电感 (在LCL拓扑中) 的控制,在能量管理上起到很重要的作用,它的值(以及它与Lsense的比率 ) 将影响多个应用功能。
假设负载断开,最大电流将出现在F01谐振的峰,它还涉及到路径L+C。磁性电感的值要显著地高于串联电感的值。一般来说,最低谐振F01峰主要取决于它的值。我们可以定义F01峰为最低谐振点,以便于记住开关频率必须不低于它的值。事实上,迫使半桥在较低扁平型电感F01下工作,串联电路存在一个电容性负载,这种条件在应用中是不能接受的,理由如下:
利用专用晶圆加工工艺实现高性能模拟IC当今电子产品对性能和精度的要求越来越高。这些产品涵盖我们日常使用的各种设备(比如,手机、音响系统和高清电视)以及只会间接接触到的设备(比如CT扫描仪和工业控制系统),系统大多采用某种数字微处理器或DS
智能交错—实现高效 AC/DC 电源的先进 PFC 控制交错是一种特殊的并联方式,即在两个或多个功率级 (通常称之为相位或通道) 之间存在独特的相位关系,为了保持两级设计所拥有的全部纹波电流消除优势,必须让各个通道彼此间相差180°同差。由于每个通道都是针
抛弃细枝末节,专注原型创意市场中很多凭借绝妙创意而大获成功的电子产品或设备。独特创意的核心是最终能够使一款设备从其他设备中脱颖而出、在某种情况下甚至可定义一种全新的产品类型。当然,在市场中定义产品独特性的因素还有很多,例如低成