在正常工作中,PIN二极管电源关闭(VSW=0V),而LNA电源仍恢复至3V。但这些零偏置PIN二极管受到寄生电容的影响,因此LNA的增益与回波损耗性能因旁路路径与输入和输出端口的不完全隔离而受损。
在LNA/开关内,电感L1和L2是铁氧体磁珠,它们在MMIC和二极管偏置网络的整个范围内呈现出高阻抗。没有L1作为扼流圈,输入信号的一部分将通过与电阻R3并联的寄生电容旁路到地。在没有L1的原型板上进行的测量表明,该电感可防止LNA噪声指标的恶化。电容C3、C4和C5将射频信号从直流电源中解耦出来,它们的容抗值都不大(在最低工作频率下的Xc为5Ω)。电容C1和C2在MMIC的输入和输出端起隔直作用。特意选择C2为一个较小值,以产生高通响应,从而补求购电感偿MMIC在高频下固有的增益滚降特性。电阻R1和R2控制MMIC的电流,它们使得当Vdd=3V时,电流为30mA。在VSW=3V时,电阻R3、R4和R5将PIN二极管的正向偏置限制在约为2.5mA。
只用一个PIN二极管可进一步简化该电路,但这样做没有任何好处,因为SOT-23或SOT-323表面贴的二极管对和单个二极管的占位空间是一样的,而价格上的差别可忽略不计。
为*估LNA/开关的性能,在以前为非旁路LNA应用设计的电路板上搭建了一个原型。该PCB由Rogers公司的RO4350B层压材料组成,当频率为10GHz是,z方向的介电常数是3.48。将该PIN二极管与其相关的偏置元件直接焊在早先就存在于PCB上的元器件的引脚/焊盘上。两个1N5719 轴向玻璃二极管被用作D1的开关元件。在后来的PCB布局中,将用SOT封装的PIN二极管对(HSMP-3893/E型)取代这些二极管。
在我们关注的频率范围内,该LNA的中位数增益为19.8dB±1.3dB。借助隔直电容C2的高通响应,对频率低于200MHz信号进行适度衰减,保证了频率响应的平坦。高频端增益的滚降与MMIC的特点一致,且可能源自于未偏置PIN二极管的寄生电容的负反馈。
在旁路模式,在整个频谱范围内,电路具有3.8到4.5dB的衰减。该模式下的损耗主要来自PIN二极管的寄生串联电感。PCB的耗散、FET的FET终端阻抗以及电阻R4的寄生并联电容对旁路模式的损耗有一些影响。不过,旁路模式损耗被很好地控制在客户规范限定的-5dB水平内,所以目前在试图进一步降低旁路损耗。
当在特定频率范围内对旁通模式进行*估时,输入和输出回波损耗表现一贯良好(低于17dB)。无偏置FET的栅极和漏极与开环电路的近似程度是影响回波损耗的主要因素。当LNA工作时,返回损耗性能并没有这样好,此时在最低频率下的最坏情况是输出返回损耗等于7dB。低于70MHz频率时,差的模压电感器输出回波损耗表现是由小数值电容C2引起的,它是对更好频率响应的一种折衷。
若没有L1,则无法满足目标噪声规范(不高于1.3dB)。共模电感器通过曲线对比,可以推测R3的寄生电容对信号损耗有0.大电流电感3~0.6dB的影响,从而将噪声同样增加了0.3~0.6dB。若使用L1,带内噪声指标会有更多变化(从0.2dB上升到0.5dB),但这并不重要。这些变化可能来自于随频率增加、铁氧体磁珠越来越弱的扼流能力,特别是对从根据制造商提供的性能图表推测出的约100MHz以上的自谐振频率(SRF)来说更是如此。
在移动电视频带范围内,采用-20dBm的双音输入功率水平将该LNA的输出三阶交调截取点(OIP3)作为若干均匀分布的频点实施了测量。通过减去从OIP3数据测得的增益,对IIP3进行了计算。OIP3不低于30.3dBm,在频带内的最大增益变异是0.8dB线性比数据表上的标称值(20dBm)有10dB的改善,该改进可归功于设计采用的更高Ids。
该LNA/开关设计满足了其目标规范且显示出具有巨大的改进潜能。例如,可通过用SRF更高的铁氧体磁珠电感替代目前所用的产品来改善噪声性能。
基于CPCI总线的智能AD,DA模块设计在工业控制领域,为了实现采集和控制功能,经常会使用到A/D,D/A模块。在实际使用中A/D,D/A模块和主机之间通信方式可以有很多选择。比如RS 232,RS 422,网络等接口方式。在该设计中A/D
放电管如何有效防止瞬间过电压?
1、如何有效防止瞬间过电压?
在日常生活、工作中,电子线路中瞬间过电压是经常发生的。造成异常过电压的原因有雷击、电力线路和通信线路之间的偶然接触、
基于DSP的光纤光栅解调系统的电路设计0 引言光纤布拉格光栅传感器(FBGS)是用光纤布拉格光栅(FBG)作敏感元件的功能型光纤传感器,可用于直接检测温度和应变,以及与温度和应变有关的其他许多物理量和化学量的间接测量。在光纤布拉格光栅传感