使用FPGA 实现功能模块
图 1 包括功能块和数据流的 H.264/AVC 宏块编码器
图 1 为高频电感器设计定义了主功能块和数据流的整个 H.264/AVC 宏块级编码器。H.264/AVC 标准的主要优势在于能够通过以不同的方式和方向分析像素冗余,预测要编码的图像内容的值,而这种分析以前从未在其他标准中进行过。但与以前的标准相比,其复杂度和内存访问带宽增加了4倍。
改进预测方法
下面重点分析一下在 H.264/AVC 视频编码设计中实现其增强编码效率的主要特点,根据前文讨论过的设计准则对这些功能模块进行评塑封电感估。
四分之一像素精度(Quarter-pixel-accurate) 运动补偿。
以前的标准采用二分之一像素运动向量精度。新设计通过采用四分之一像素运动向量精度对此进行了改善。二分之一像素位置的预测值是通过沿横向和纵向采用一个一维6抽头 FIR 滤波器 [1, -5, 20, 20, -5, 1]/32 计算得到的。
四分之一像素位置的预测值是通过将全像素和二分之一像素位置的采样值进行平均得到的。这些二次采样内插运算可在 FPGA内的硬件中高效地实现。
小块尺寸可变块大小运动补偿。
该标准在 16×16 像素宏块尺寸中为铺瓦结构 (tiling structure) 提供了更多的灵活性。它允许使用 16×16、16×8、8×16工字电感器、8×8、8×4、4×8 和 4×4 子宏块尺寸。
由于给定 16×16 宏块铺瓦结构的组合增多,因此要找到一个速率失真优化铺瓦解决方案需要很高的计算强度。这一额外特性为运动估计、细化和模式决策过程中所用的计算引擎增加了巨大负荷。
环中自适应去块(deblocking) 滤波。
去块滤波器已经在 H.263+ 和 MPEG-4 第 2 部分的实现中作为后处理滤波器被成功采用。在 H.264/AVC 中,去块滤波器将在运动补偿环路中移动,对在预测和解码过程中的残留差值编码阶段造成的块边缘进行滤波。滤波对 4×4 块和 16×16 宏块边缘均可进行,两个边上的两个像素可能会被一个三抽头滤波器更新。滤波器系数或强度由内容自适应非线性滤波器决定。
帧内编码有向空间预测。
当无法采用运动估计时,可以采用帧内有向空间预测来估计空间冗余。这种技术通过从相邻块沿预先定义的一组方向向相邻像素外插来预测当前块。然后就可以对预测块和实际块之间的差值进行编码了。
这种方法在存在空间冗余的平面背景中特别有用。对于 Intra_4×4 预测,总共有九种预测方向;对于 Intr塑封电感器a_16×16,则有4种预测方向。注意,在 Intra_4×4情况下,由于数据因果性,将导致对当前块上边和左边相邻的 13 个像素值的快速内存访问。对于 Intra_16×16,每边将使用 16个像素来预测一个 16×16 块。
多参考图像运动补偿。
H.264/AVC 标准为帧间编码提供了多参考帧选项。除非参考图像的数量为1,否则必须指定参考图像在多图像缓冲区内的索引位置。多图像缓冲区的尺寸决定编码器和解码器中内存的使用情况。这些参考帧缓冲区必须在编码器的运动估计和补偿阶段分别访问。
加权预测。
JVT 认为在对一些有衰弱现象的视频图像进行编码时,采用加权运动补偿预测可以极大地改善编码效率。
改善编码效率
除了预测方法得到改进以外,该标准设计的其他部分也对编码效率的改善进行了增强。下面两个附加特性最容易对基于关于软件和硬件分割的设计准则的整体系统架构产生影响。
小块尺寸,层次化,精确匹配反变换和短字长变换。
同其他标准一样,H.264/AVC 也是对运动补偿预测残留施加变换编码。
但是,与以前采用 8×8 离散余弦变换 (DCT) 的标准不同,这种变换是施加于 4 x 4 块上,并且采用 16 位整数格式,可以精确地进行反变换。小块有助于减小分块和振铃结果,而精确整数规范则消除了编码器与反变换中的解码器之间的一切不匹配问题。 插件电感器
单相逆变器多环反馈控制策略研究摘要:应用了一个多环反馈控制策略来调节不间断电源逆变器的输出。分析了这种控制策略的时域与频域特性。最后给出了仿真和实验波形,结果证明了这种控制方法对线性负载和整流桥负载都有很好的控制效果。关键词:逆变
多路振弦传感器的扫频激振技术振弦式传感器是目前应力、应变测量中较为先进的传感器之一。振弦式传感器的输出是频率信号,信号处理过程中无须进行A/D及D/A转换,因此,抗干扰能力强,信号传输距离远,而且对传输电缆要求低。另外,振弦式传
基于YL-236单片机实训装置的数字电压表的设计方一、引言数字电压表采用数字化测量技术,可以将模拟量转换成数字量并加以显示。由于其具有测量精度高、抗干扰能力强等优点,被广泛应用于工业自动化仪表领域。下面本文就以亚龙YL-236单片机实训装置为平台,介