此外,还采用了一种基于阿达玛矩阵 (Hadamard matrix) 的附加变换,以实现已变换块的 16 个 DC 系数的冗余。与 DCT 相比,所有整数变换矩阵中只包含从 -2 到 2 之间的整数。这样,只使用低复杂度的移位寄存器和加法器就可以通过 16 位算术计算变换和反变换。
算术和上下文自适应熵编码。
有两种熵编码方法:一种是基于上下文自适应切换变长编码集 (CAVLC) 的低复杂度技术,一种是计算要求更高的基于上下文的自适应二进制算术编码 (CABAC) 算法。
CAVLC 是 H.264/AVC 的基本熵编码方法。其基本编码工具包括一个结构化 Exp-Golomb 编码 VLC,它通过单独定制的映射,可应用于除与量化变换系数有关的语法元素以外的所有语法元素。CABAC则采用了一种更为复杂的编码方案。
首先,根据一种预定义的扫描模式,将变换系数映射到一个 1 维数组。量化后,块将只包含一些重要的非零系数。
根据该统计结果,使用5个数据元素来传递特征 4 × 4 块的量化变换系数的信息。使用 CABAC 可进一步改善熵编码的效率。
CABAC 中的两个部分。规定算术编码内核引擎及其相关的概率估计是免乘法、低复杂度方法,只能使用移位和查找表。自适应编码的使用使之能够与非静止符一体成型电感号统计适应。通过采用根据前面编码语法元素进行估计从而在条件概率模型间切换的上下文建电感生产模方法,CABAC 可获得比 CAVLC 低 5~15% 的位速率。
图2 典型H.264/AVC硬件/软件功能块分割
图 2 显示了 H.264/AVC SD 视频编解码器系统级功能块的典型分割。该解决方案基于针对 TI公司的TMS320DM642 DSP 的 Spectrum Digital EVM DM642 评估模块,结合 Xilinx XEVM642- 2VP20 Virtex-IIPro或XEVM642-4VSX25 Virtex-4子插件板实现。
结语
以最优模式使用时,与以前的视频编码标准(如 MPEG-4 第 2 部分和 MPEG-2)相比,H.264/AVC 标准的编码工具可在很宽的位速率和分辩率范围内使编码效率提高约50%。但是,当分辩率比源输入格式 (SIF) 高时,算法极为复杂。
参考文献
“联合视频规范国际标准 ITU-TU 建议草案和最终草案 (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC),&差模电感器rdquo;ISO/IEC MPE功率电感器G 与 ITU-T VCEG 联合视频工作组 (JVT) ,JVT-G050, 2003
A. Luthra、G.J. Sul电感器课件livan 和 T. Wiegand,2003 年 7 月。“有关 H.264/AVC 视频编码标准的专门问题”。 IEEE Trans.电路系统视频技术 13(7): 557-725
单相逆变器多环反馈控制策略研究摘要:应用了一个多环反馈控制策略来调节不间断电源逆变器的输出。分析了这种控制策略的时域与频域特性。最后给出了仿真和实验波形,结果证明了这种控制方法对线性负载和整流桥负载都有很好的控制效果。关键词:逆变
多路振弦传感器的扫频激振技术振弦式传感器是目前应力、应变测量中较为先进的传感器之一。振弦式传感器的输出是频率信号,信号处理过程中无须进行A/D及D/A转换,因此,抗干扰能力强,信号传输距离远,而且对传输电缆要求低。另外,振弦式传
基于YL-236单片机实训装置的数字电压表的设计方一、引言数字电压表采用数字化测量技术,可以将模拟量转换成数字量并加以显示。由于其具有测量精度高、抗干扰能力强等优点,被广泛应用于工业自动化仪表领域。下面本文就以亚龙YL-236单片机实训装置为平台,介