图8. 系统级设计。
评估板和PC之间的通信通过ADM3251E提供,该器件与RS-232收发器隔离。ADM3251E结合了isoPower技术,无需另外的隔离铁氧体电感式DC-DC转换器。它非常适于严苛电力环境下的操作,或者需要频繁插拔RS-232电缆的场合,因为RS-232的引脚,包括Rx和Tx,都需要防范±15kV的静电放电干扰。
评估系统软件和评估工具:这套评估系统具有多种功能。与PC的通信可通过LabView8实现。微控制器(ADuC7027)的固件用C语言编写,能够控制往来ADC和DAC通道的低级命令。
图9所示为主屏幕界面。左侧的下拉菜单使用户能够选择激活的ADC和DAC通道。在每一个ADC和DAC菜单下方是一个范围设置下拉菜单,用于选择期望的输入和输出范围进行测量和塑封电感控制。它支持的输入和输出范围包括:4mA至20mA、0mA至20mA、0mA至24mA、0V至5V、0V至10V、±5V和±10V。通过利用内置的PGA,ADC可直接提供小的信号输入范围。
图9. 评估软件主屏幕控制器。
图10所示的是ADC配置屏,用于设置ADC通道、更新速率和PGA增益;使能或禁止激励电流;以及其它通用ADC设置。通过将相应的DAC输出通道连接到ADC输入端,并调整每个范围,可以校准每个ADC通道。采用这种校准方法时,AD5422的偏移和增益误差指示每个通道的偏移和增益。如果这些不够精确,可采用超高精度电流和电压源进行校准。
图10. ADC配置屏幕。
在选择ADC的输入通道、输入范围和更新电感器生产厂家速率之后,现在我们利用ADC Stats屏幕,如图11所示,显示一些被测量的数据。在这个屏幕上,用户选择数据点的数目进行记录;软件生成所选通道的柱状图,计算峰-峰(P-P)和有效值(RMS)噪声并显示结果。在此处显示的测量范例中,输入信号通过AD8220被连接到AD7793:增益=1,更新速率=16.7Hz,采样数=512,输入范围=±10V,输入电压=2.5V。峰-峰分辨率为18.2位。
图11. ADC统计屏幕。
在图12中,输入信号被直接连接到AD7793,绕过AD8220。片上2.5V基准电压被直插件电感器接连到AD7793的AIN+和AIN–通道,提供一个0V的差分信号给ADC。峰-峰分辨率是20.0位。如果ADC条件保持相同,但2.5V的输入被连接到AD8220,则峰-峰分辨率下降到18.9位,其原因有两个:在低增益时,AD8220带给系统一些噪声;提供输入衰减的可调电阻导致ADC出现一些范围损失。PLC评估系统允许用户改变可调电阻以优化ADC的满量程范围。
图12. AD7793性能。
电源输入保护:PLC评估系统采用针对电磁兼容(EMC)的最佳实践。一个稳压直流电源(18V至36V)通过2线或3线接口连接到板上。电源必须防范故障和电磁干扰(EMI)。如图13所示,在板级设计中采取下列防御措施,以确保PLC评估系统免于电源端口可能产生的各种干扰。
图13. 电源输入保护。
超越规格:更高电流的供给与测量太阳能电池、电源管理器件、高亮度LED和RF功率晶体管的特性分析等高功率测试应用经常需要高电流,有时需要高达40A甚至更高的功率,MOSFET和绝缘栅双极晶体管(IGBT)将需要100A以上的电流。但
基于单片机的PSD数据采集电路的设计方案(一) 0 引言PSD作为一种精密的光电位置传感器,具有灵敏度高、响应时间短、位置分辨率高、光谱响应范围大等特点,因此被广泛应用于现代光电检测技术中,尤其是高精度、高速度的数据采集技术中。如何在极短的响应时
针对车载音频电源的多相升压解决方案车载音频放大器通常使用升压转换器来生成 18 V~28 V(或更高)的电池输出电压。在这些 100W 及 100W 以上的高功耗应用中,需要大升压电感、多个级别的输出电容器、并行 MOSFET 及二极