为了保证CPU正常的上电复位时序和各个系统芯片之间的复位顺序,设计了如图4所示的系统复位电路。该系统的核心为-EPLD器件EPM7128。电源监控芯片max708在检测到输入电压V∝稳定时给出200ms左右的V∝OK信号,满足系统时钟稳定所需要的至少lOOms的时间。EPLD片内逻辑电路检测到V∞OK信号后,内部计时电路开始工作,准确地给出CPU和所有系统芯片的复位信号。
该方案对系统所有的复位信号统一管理,能确保所有复位信号的正确顺序。EPLD的可重复编程性可方便后期调试和调整,具有很强的灵活性。片内多余的逻辑可用于塑封电感系统所需的简单逻辑器件,避免了采用过多的分立逻辑器件,在提高系统可靠性的同时节省了PCB空间。
2.3时钟电路及信号完整性
龙芯2号和GT64240北桥芯片最高工作外频可达133MHz。为了达到这个要求,纯净、稳定的时钟设计以及对关键的高速信号进行信号完整性分析是保证整个系统可靠工作的前提。
为提高时钟电路的稳定性,通过仿真确定了系统各时钟特性阻抗和端接方式,并通过在布线时控制相关时钟信号严格等长来控制传输延迟。图5所示是采用源端匹配方式、驱动信号为133MPlus信号、板级时钟阻抗为50Ω时.扫描匹配电阻从20D~70&Omeg一体电感器a;、步进为5Ω时的反射仿真波形。从图中可以看出,所有时钟波形信号都满足单调性,但在某些区域有较大的过冲绕行电感器。限定过冲在300mV以内,匹配电阻值应在40Ω-55Ω之间,具片式电感器的用途体可由实际测试结果决定。仿真工具采用的是Cademe的PCBSI。用该工具同时也可对EMI、串扰进行仿真。
除时钟信号外,对所有信号也进行了分析,确定了sysad总线和sdram总线等信号为系统的关键高速信号。对这些关键信号,由于板级布线密度很大,必须考虑串扰、过冲等可能发生的信号完整性问题。这里采取了先期约束布线机制,针对不同的信号制定了相应的布线规范,包括等长信号组、布线间距、最大最小布线长度等。后期通过提取实际布线的拓扑结构进行仿真,根据仿真结果进行布线调整。后期的调试证明了这种方法的可行性。
由于充分考虑到设计中的各个关键环节,基于龙芯2号处理器的PC104Plus处理器模块一次性投板并调试成功。经过实际测试,能稳定运行中科院计算所为龙芯2号移植的L塑封电感inux操作系统和相关的测试程序中,并达到系统设计的各项预期目标.现已成功应用于一航空电子视频记录仪中。经过实际应用表明,该处理器模块运行可靠,可推广应用。
TI热门信号链基础系列之 54:谁是音频时钟的“老关键词:I2S、主时钟、MCK、PLL、BCK、LRCK、压控振荡器、VCO、音频、模拟、半导体、德州仪器、TI信号链基础知识#54 谁是音频时钟的 老板 ,谁是主,谁又是从呢?作者:Dafydd R
[充电器]充电器不连接手机时滋滋响,反常吗?手机电充满后,从插线板上拔掉充电器,充电器会有滋滋的响声,10s后消失。
要充电的时候,刚把充电器插到插线板上就会有滋滋的响声,另一头接上手机就没滋滋的声音了。
以前从没留意
开关电源设计实战经验总结开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。电路和器件的选择一个关键点是保持dv/dt和di/dt在较低水平,有