介绍
降压-升压转换器被广泛应用于工业用个人计算机 (IPC),销售点 (POS) 系统,和汽车启停系统。在这些应用中,输入电压可以高于或低于所需的输出电压。基本反向降压-升压转换器具有一个相对于接地的负输出电压。单端初级电感器转换器 (SEPIC),Zeta转换器和双开关降压-升压转换器具有正向或非反向输出。电感厂家然而,与基本反向降压-升压转换器相比,所有这三个非反向拓扑结构具有额外的功率元件,并且效率有所下降。本文介绍对这些降压-升压转换器的操作原理、电流应力和功率损耗分析,并且提出高效非反向降压-升压转换器的设计标准。
反向降压-升压转换器
图表1显示了基本反向降压-升压转换器的电路原理图,连同连续传导模式 (CCM) 下的典型电压和电流波形。除了输入和输出电容器,功率级由一个功率金属氧化物半导体场效应晶体管 (MOSFET),一个二极管,和一个电感器组成。当MOSFET (Q1) 接通时 (ON),流经电感器 (L1) 的电压功率电感器为VIN,而电感器电流的斜升速率与VIN的上升速率成正比。这导致电感器内的电能累积。当Q1接通时,输出电容器提供全部负载电流。当Q1关闭时,二极管 (D1) 被正向偏压,并且电感器电流的下降速度与VOUT的下降速度成正比。在Q1断开时,电能从电感器被传送到输出负载和电容器。
CCM模式下的反向降压-升压转换器的电压转换率可表示为:
在这里,D是Q1的占空比,并且始终在0至1的范围内。等式1表示输出电压的幅度可以高于(此时D>0.5)或低于(此时D<0.5)输入电压。然而,输出电压与输入电压的极性始终相反。
传统非反向降压-升压转换器
反向降压-升压转换器不能满足需要贴片电感器正向输出电压的应用的要求。SEPIC,Zeta,和双开关降压-升压转换器是三种常见的非反向降压-升压拓扑结构。Zeta转换器,也被称为反向SEPIC,它与SEPIC相类似,但是不如SEPIC那么受欢迎,其原因在于这类转换器需要一个会增加电路复杂度的高侧驱动器。
图表1.反向降压-升压转换器
在图表2中显示了一个SEPIC转换器和其CCM模式下的理想波形。一个SEPIC转换器的电压转换率为:
等式2表示正向输出电压和降压-升压能力。与一个反向降压-升压转换器相类似,一个SEPIC转换器具有一个单个MOSFET (Q1) 和一个单个二极管 (D1)。SEPIC转换器中的MOSFET和二极管对于电压和电流的需求与反向降压-升压转换器中此类元件的电压和电流需求相类似。同样地,MOSFET和二极管的功率损耗也是相似的。在另一方面,SEPIC转换器具有一个额外的电感器 (L2) 和一个额外的交流耦合电容器 (Cp)。
在一个SE插件电感PIC转换器中,L1的平均电感器电流等于输入电流 (IIN),而L2的平均电感器电感器的作用电流等于输出电流 (IOUT)。相反地,反向降压-升压转换器中的单个电感器的电流值为IIN + IOUT的平均值。耦合电容器上会出现相对于输入电流和输出电流的高值均方根 (RMS) 电流,这会生成额外的功率损耗,并减少转换器的总体效率。
为了减少功率损耗,需要具有低值等效串联电阻 (ESR) 的陶瓷电容器,而这样通常会使成本增加。SEPIC转换器中与额外耦合电容器相耦合的额外电感器会增加印刷电路板 (PCB) 的尺寸以及总体解决方案成本。耦合电感器可被用来替代两个单独的电感器,以便减少PCB尺寸。然而,相对于单独的电感器,现货供应的耦合电感器的选择范围有限。有时需要定制设计,这一也增加了成本和交货时间。
图表2.SEPIC转换器
一个传统双开关降压-升压转换器使用一个单个电感器(图表3)。然而,它比反向降压-升压转换器多了一个MOSFET (Q2) 和一个二极管 (D2)。通过同时接通和断开Q1和Q2,转换器运行在降压-升压模式,而电压转换率也可由等式2计算得出。这可以确保双开关降压-升压转换器执行非反向转换。在图表3中显示了运行在降压-升压模式和CCM模式下的双开关降压-升压转换器的理想波形。在Q1和D1上都出现值为VIN的电压应力,而Q2和D2上的电压应力值均为VOUT。在忽略电感器纹波电流的情况下,Q1,Q2,D1和 L1上的电流应力值均为IIN + IOUT。相对较多的功率器件数量和降压-升压模式中的高电流应力值会妨碍转换器的高效率。
基于Matlab/DSP Builder多波形信号发生器的设计 1 引言 传统的波形发生器多采用模拟分立元件实现,产生的波形种类要受到电路硬件的限制,体积大,灵活性和稳定性也相对较差。采用FPGA器件直接实现多种波形信号发生器,配以相应的外围器件实现的波形发生器
直流变换器并联运行时的环流和振荡控制 摘要:开关电源并联系统产生的环流和振荡会对电子元件产生高电压冲击,降低功率因数,并且使并联的各个模块之间产生抑止。因此,对开关电源并联系统的技术研究得到了广泛的关注。分析了直流变换器并联系统产生环流
将颠覆电子产业?HRL晶体管是什么鬼 在近期,由美国波音公司和通用汽车公司拥有的研发实验室 HRL 正式宣布将首次展示其研发的互补金属氧化物半导体 FET 技术。其实,该研究结果早在今年 1 月 6 日就被发表在了 i