由于军事应用中一些不断电设备耗能较大,因而普遍采用串连电池组的模式避免过高的电流。串连电池组的充放电与单一电池的充放电有所不同,电池组内不同电池的差异如果不被重视就会造成电池组使用效率降低,减共模电感器少蓄电池的使用寿命;考虑军用设备的应用环境的特殊要求,目前市场上还没有一种可以满足这些需求的综合充放电控制设备,因而这里设计一种可以很好满足这些需求的新型蓄电池充放电综合控制设备。
1 系统设计概述
该蓄电池充放电综合控制设备以MC68HC908SR12单片机为控制核心,采用FPGA辅助控制设计。主要包括电源电路、恒流恒压充电控制单元、平衡放电控制单元、中央控制单元、FPGA辅助控制单元、温度检测电路、人机接口电路等。蓄电池充放电综合控制设备主要针对军事应用中一些不断电设备耗能较大,普遍采用蓄电池串联供电的情况设计的。在设计过程中着重考虑蓄电池的平衡特性,以提高串联蓄电池供电组的工作效率、延长其使用寿命。图1是其系统框图。
2 硬件设计
下面对充放电综合控制设备的硬件设计过程进行概述说明。
2.1 电源电路
使用开关现代电子技术作为充电器的供电设备。开关电源采用脉冲调制方式PWM(Pulse Width Modulation)和MOSFET,BTS,IGBT等电子器件进行设计。开关电源集成化程度较高,具有调压、限流、过热保护等功能。与线性电源相比其输入电压范围宽(通常可达交流85~265 V)、体积小、重量轻、效率高。同时,其易于FPGA辅助控制单元对其进行控制。
2.2 充电控制单元
充电控制单元采用目前较成熟的恒流恒压电感器生产充电电路来设计完成。图2是电路原理图。恒流恒压电路由Motorola公司的MC68HC908SR12单片机片内模拟电路模块和片外的MOSFET开关管、肖特基二极管、滤波电感、滤波电容等器件组成。模拟电路模块是Motorola公司的MC68HC908SR12单片机的特有部件,它由输入多路开关、两组可程控放大器、片内温度传感器、电流检测电路等组成。可程控放大器总放大倍数为1~256。放大器的输入可选择为2路模拟输入脚(ATD0,ATD1)、片内温度传感器、模拟地输入(VSSAM)。ATD0和VSSAM间可接一个电流检测电阻,用于测量外部电流,它还连接至电流检测电路,可在电流超过指定值时产生中断并输出信号。
在充电开始前的预处理阶段,根据检测到的不同电池特性,软件选择相应的充电算法,充电算法由单片机和FPGA辅助控制单元实现。在充电开始后,软件定时采集感应电阻R上的电压值,经过计算,设置SR12单片机的输出控制参数。同时,电电感器生产流检测电路实时检测充电电流,在电流超过指定值时产生中断并由SR12单片机控制及时关断充电电流,实现恒流恒压模压电感的充电控制
均衡充电是本充放电综合控制设备的一个重要特点。在充电的过程中,由于电池的质量不相同,容量小、质量差的电池端电压在充入相同电量后会出现电压增长比另一个电池多的情况,如果不采取措施,它们的电压差将会增大,以至其中一个电池很快达到规定的安全电压,充电过程也将被迫停止。此时应该停充电压高的电池,即均衡充电。这样有利于恢复电池内受损的单元,使充电过程能顺利地进行下去。
2.3 放电控制单元
放电控制单元主要有2部分组成,一是返驰式平衡放电电路,可以实现电池组的平衡放电。平衡放电是本充放电综合控制设备的一个重要特点。在放电的过程中,由于电池的个体差异,如果不采取措施,电池组内电池个体的差异将越来越明显,这样会使电池组工作效率降低,使用寿命减少。放电控制单元采用的返弛式放电电路设计,其原理图如图3所示,该电路本身具有的电感端电压互相牵制特性(也称电路的返弛性)可以实现蓄电池组放电电池个体的平衡放电。这样有利于恢复蓄电池内的受损单元,提高蓄电池的工作效率和使用寿命。二是过度放电保护电电感厂路,该电路可以实现对电池组的过度放电保护。图4是电池组过度放电保护电路原理图,当端电压检测电路检测到的电压低于设定的安全放电电压时,该保护电路可以把放电电路切断,实现对蓄电池的保护。
基于嵌入式图像信息采集与传送系统的设计1.引言家庭安防是困扰人们很久的问题,目前 智能家居 的崛起可以说不光解决了这一问题,而且提高了人们的生活质量。但是它的高额费用是大多数人所负担不起的,本文提出了一款简单、低廉的专一家庭安防系统来满足
面向PLC的精密信号处理与数据转换器件可编程逻辑控制(PLC)是一种基于计算机的紧凑的电子系统,它使用数字或者模拟输入/输出模块来控制机器、工艺和其他控制模块。PLC能够接收(输入)和发送(输出)各种不同类型的电气和电子信号,并利用它们来
电源电路问题请教请问下面的电路有什么问题没,有没有可能输入AC48V的地方输入AC9V,C81上还能输出15V啊?好像看不清楚,发张PDF的反激式类型典型特点就是宽电压输入,你的输入AC48在不大的范围波动,输