从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);
只要初级电流和次级电流同时为零,便是不连续模式(DCM);
介于这俩之间的是过度模式,也叫临界模式(CRM)。
以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。类似于下图
这个图是一个48V入的反激电源。
从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。具体RCD吸收电路图如下
简单分析下工作原理
1.当开关S开通时,二极管D反骗而截至。电感储存能量。
2当开关S关断时,电感电压反向,把漏感能量储存在C中,然后通过R释放掉。细心的朋友可能会发现,当开关关断的时候,这个RCD电路和次级的电路是一模一样的,D整流,C滤波。R相当于负载。只不过输出电压不是VO,而变成了次级反射到初级的电压VF。所以,注意了,R的值不能取得太小,太工字电感器小了损耗严重,影响效率。而且电阻的功率会变的很大!
下边来个加了RCD吸收的波形
关于RCD吸收的选取网上有很多文章,在以后我会介绍下!大家也可以看我的博客(只要在百度里搜老梁头的博客,就会出来。里边有一篇介绍RCD的)
原理先讲到这里吧,下边我讲下变压器的设计!
今天讲下变压器的设计方法!
变压器的设计方法有多种,个人感觉适合自己的才是最好的,选择一个你自己最熟悉的,能够理解的才是最好的!
我先介绍下一种设计方法:
1.先确定输入电压,一般是按照最低输入直流电压计算VINmin计算
A.要是直流输入按直流的最低输入来计算;
绕行电感B.要是输入为交流电,一般对于单相交流整流用电容滤波,直流电压不会超过交流输入电压有效值的1.4倍,也不低于1.2倍。
列如,全范围交流输入85-265VAC的电源,一般按85VAC时计算,那VINmin=85*1.2=102V,一般会取整数按100VDC计算。
2.确定导通时间Ton
导通时间Ton=T*D
T为周期 T=1/F
D为最大占空比,一般在最低输入电压的时候,D会最大,保证输出稳定。
注意大的占空比可以降低初级的电流有效值,和MOS的导通损耗,但是根据伏秒法则,初级占大功率电感贴片电感器空比大了,次级的肯定会小,那么次级的峰值电流会变大,电流有效值变大,会导致输出纹波变大!所以,一般单端反激拓扑的占空比选取不要超过0.5。
而且一般的电流控制模式,占空比大于0.5要加斜率补偿的,对调试是个难度。
还有一重要的是你的占空比决定你的匝比,匝比决定啥,嘿嘿,反射电压VF,忘了再去上边看下,模压电感再加上你漏感引起的尖峰,最终影响你MOS的耐压。占空比越小匝比越小,反射电压VF越低,MOS的电压应力小。反之MOS的电压应力大,所以占空比要考虑好了。要保证再最高电压下你的VDS电压在MOS的规定电压以下,最好是降额使用,流出足够的余量来!
列如,电源的开关频率为100K,最低输入时的最大占空比为0.4,那T=1/100000=10μS,那么Ton=0.4*10μS=4μS。
3.确定磁芯的有效面积AE
AE一般会在磁芯的资料中给出。
4.计算初级匝数NP
NP=VINmin*Ton/ΔB*AE
式中VINmin为直流最低输入电压;
Ton为导通时间
AE为磁芯的有效面积
ΔB为磁感应强度变化量,这个值和磁芯材质,及温升等有关,一般考经验来选取,在0.1-0.3之间,取得越大,余量越小,变压器在极端情况下越容易饱和!俺一般取0.2。
[开关电源]开关电源纹波在后级电路中的抑制方式如题,开关电源纹波在后级电路中的抑制方式有哪些,现在用一款电源适配,输出有100Khz100mV左右的干扰,好像也不算是纹波,像是一个脉冲,出现频率是100Khz,脉冲式100Mhz上图看看ternenc
有个关于稳压芯片的问题希望大伙给科普下如上图,为什么有些型号的稳压芯片这个引脚是地,有些又是电压输出呢。
感觉不太能理解为什么用这个引脚作为电压输出,因为对于贴片封装的电路铺铜网络又是GND的时候散热很是成
铜版纸色调对印刷色彩表现性能的影响版纸生产过程中,原纸的浆料种类、配比以及涂布调色工艺的不同使得最终的纸张色调上有所差别,其中以偏蓝紫色和偏黄色最为常见,印刷色彩是纸张和油墨共同作用的结果,铜版纸色调差