如图8.7所示,我们将单独研究RL和ZO对Aol曲线的影响。FHP是Aol修正曲线中的预测极点。
图8.7:RL影响下的Aol修正曲线
为了利用叠加计算的结果绘制Aol修正曲线,我们需要获得OPA348的空载Aol曲线。该曲线可从制造商的产品说明书中获得,也可通过OAP348的TinASPICE宏模型测量得到(在本例中便是如此,因为该宏模型与相关产品说明书完全相符)。图8.8显示了空载Aol测试电路。请注意我们如何在不加载运算放大器输出的情况下利用阻值较大的电阻器创建电感磁芯DC工作点使之与我们的应用相匹配。如果在输出端存在饱和DC条件下(正或负饱和)对运算放大器进行SPICE分析,则会得到错误的Aol曲线,因为运算放大器宏模型中采用的MOSFET模型并不在线性工作区域之内。
图8.8:空载Aol测试电路
图8.9显示OPA348空载Aol曲线的TinASPICE结果。
图8.9:空载Aol曲线
现在我们可以在图8.10中综合各个叠加分析结果,最终形成预测的Aol修正曲线。我们在空载Aol曲线中绘出了ZO、CL和RL的影响。由于空载Aol曲线经过了ZO模型处理,因此得到了“简化”或“倍增”。而线性数学中的倍增只是伯德图(Bode)的添加。从我们的预测Aol修正曲线可以看出,DC到fHP(149Hz)之间的增益保持不变,约80dB,随后以-20dB/10倍频程的速度下降,直至fp2(5.53kHz),然后变为-40dB/10倍频程的速率下降。
图8.10:预测的Aol修正模型
在对比实际的Aol修正曲线和预测的Aol修正曲线之前,我们先从滤波器的角度看一看叠加法的差距所在。图8.11显示了存在RL和CL的网络电路。利用图8.12中的结果(其中包括叠加法大致分析的结果以及来自SPICE的实际频率响应)进行ACTinASPICE分析。请注意,fp2的频率预测接近实际情况,而fHP的频率预测则与实际存在偏差,但利用CO与RL可以计算出fHP值。如果在图中加入CL,我们预测这将导致在较低频率上出现fHP,因为CL随着频率变化将会降低RL的网络阻抗。如果CL<CO/10,则CO起主导作用,而CL不再是重要因素。但是,我们可以利用基于叠加的简化计算方法来快速检查曲线形状及相对断点,从而可以预测fHP存在较低的实际频率值。
图8.11:fHP及fp2实际频率测试电路
图8.12:fHP及fp2实际频率测试结果
图8.13是用于测量实际A模压电感ol修正曲线的测试电路。请注意我们如何打开VOA与电感厂家反馈点VT之间的闭环运算放大器电路。CL一体成型电感在左侧直接连接至OPA348U1的输出端。至此,修正的Aol为VOA/VFB。
图8.13:Aol修正测试电路
图8.14显示了利用TinASPICE工具测量的Aol修正曲线。请注意,终值为fHP=92.86Hz,fp2=6kHz。用TinA分析得到滤波器的结果为:fHP=94.1Hz,fp2=5.99kHz。叠加法大致分析结果则为:fHP=149.44Hz,fp2=5.53kHz。我们再次强调叠加法分析结果十分接近实际情况,而对于概念和完整性检查,TinASPICE分析是正确的。
图8.14:Aol修正曲线TinASPICE分析结果
我们通过图8.15计算无稳定性补偿情况下的1/β值。输出电压的简单电阻分压器可产生:1/3.5dB。
图8.15:无稳定性补偿时的1/β值
我们在Aol修正曲线中绘出了图8.16中无补偿电路的1/β图形。请注意,我们一眼就可以看出40dB/10倍频程的闭合速度,凭经验判定这是一条不稳定的电路。
图8.16:Aol修正曲线与1/β
环路增益的TinASPICEAC分析可以证实我们的一阶怀疑,如图8.17所示。环路相位在fcl时降至5度,此时环路增益降低到0dB。虽然此电路可能不是振荡器电路,但也并非我们希望每月量产为1000套的器件。
热微接触印刷制备酚醛树脂微纳米图案表面精细图案是指在至少一维的方向上生成纳 米级的规则表面结构,利用聚合物的热化学性质实 现微纳米精细图案化的方法,已经引起了越来越广 泛的关注.这样的技术包括利用激光产
In-circuit programming switchA simple bidirectional analog switch (MAX4525) facilitates in-circuit programming by providing dual
裸视式3D显示技术简介目前3D显示技术主要可以分为眼睛式和裸视式,眼睛式3D显示技术发展较早,解决方案也比较成熟,在商用领域已经应用多年,今年以来上市的3D平板电视也全部为眼睛式产品。但是眼睛式3D电视需要佩戴定制的3D眼
2/5 首页 上一页 1 2 3 4 5 下一页 尾页