1 主电路工作原理与设计
1.1 供电电路
该电源供电电路原理图如图1所示。
要求输入电压为DC 24(1±20%)V,输出电压为DC 110V,电流为3A。输入电压由外部电源提供,一体电感器同时具有外接蓄电池功能。当V1(外部DC24V)输入正常时,由V1向电源供电,同时V1向蓄电池充电,并提供LED指示,当V1输入欠压(≤21V)、过压(≥30V)时由V2(蓄电池)向电源供电并提供LED指示。当蓄电池≤21V时切换到外部24V供电,并提供LED指示。
当外部电压V1高于VZ1(30V)时,Z1电流流过,T3导通比较器T4A脚1为低电平,LED1灯灭,LED2灯亮。由外接蓄电池V2供电。当外界蓄电池电压降至21V时,比较器T4B的脚6电压低于脚52.5V基准,比较器T4B的脚7输出高电平,即比较器T4A脚3电压高于脚2电压,即脚1为高电平,此时LED1灯亮,LED2灯灭,由外部电源供电。
正常供电时外部电压V1通过光耦向T1提供基极电流,同时为外接蓄电池提供了一个电子开关。T4A的脚1为高电平,T2处于导通状态,光耦的光敏三极管的CE段被拉至低电平,控制继电器不工作此时LED1灯亮,LED2灯灭。
当外部电压V1低于21V时,比较器T4A脚3电压低于脚2的2.5V基准。脚1输出为低电平,T2截止,T1导通,继电器工作,LED1灯灭,LED2灯亮。
由于输入电压较低,而负载较重所以采用推挽式变换电路。因为推挽电路比半桥、全桥电路功率开关管承受的电压高一倍,推挽功率开关管的电流减小一倍,管子损耗小。
1.2 推挽变换器基本工作原理
推挽式逆变电路分共射极、共基极、共集电极三种类型。由于共射极电路变压器体积小,效率高,应用最广,所以采用共射极电路。
推挽电路如图2所示,S1、S2栅极加倒相的对称激励脉冲信号,激励电压UG1使S1导通,S2截止,则输入电源通过S1、NP1及变压器次级回路向负载供电。在这期间施加于截止管S2上的电压为2E。当激励信号消失时,两管均截止,每管承受的电压为E。同理,激励电压UG2使S2导通,S1截止,电源通过S2、NP2及变压器次级回路向负载供电。在这期间施加于截止管S1上的电压也为2E。当激励信号消失时,两管又都截止,每管承受的电压为E。在上述两个过程中,输出变压器T副边绕组的电压方向相反,输入直流电压变成了矩形波交流电压,完成了逆变任务。
2 设计内容和方法
2.1 功率开关管的选择和计算
功率开关管的选择主要是耐压和集电极电流等参数。
2.1.1 耐压的选择
功率场效应管漏源击穿电压BVDS随温度而变化,结温上升,耐压值也上升。而双极型晶体管相反,故选用功率场效应管。在实际一体成型贴片电感选择功率开关管的耐压时,要考虑电压波动,干扰尖电感厂家峰电压等影响,以防止二次击穿。
推挽电路功率开关管漏、源极间的电压应为二倍输入最高直流电压与干扰尖峰电压之和,即
其中:Emax=30V;
通常考虑干扰尖峰电压Ur为最高直流电压的(20~30)%,所以
Ur=6V~9V。
则Uds=2Emax+Ur=2×30+9≈69V
选用BVDSO≥69V的场效应管即可。
2.1.2 电流的选择
电流的选择决定于功率开关管的功耗和发热,所以通过开关管漏极最大电流应小于其极限参数IDM。漏极电流应根据负载要求的直流功率,导通的时间及效率来确定。在选择功率开关管时,电路中有些参数,如效率、导通时间、截止时间是未知的,对于未知量可以估算或假定。
推挽变换电路的电流为
式中:0.7~0.9为变压器效率,这里取0.8。
考虑功率开关管导通时间占空比,将计算的Idmax增大(10~30)%,最大值为25.53A,这里取IRFP150。
DC/DC变换器并联均流技术(三)3 其他均流法有源法如外加控制器法、平均法和主从法,这些方法均需要均流母线,均流母线的存在对系统稳定性有影响且加大了控制回路的设计。解决的途径有2 种,一种是采用无均流线控制,另一种则是改善均流信号获
纪念SIMPLE SWITCHER问世25周年 一切都从五寸盘开始,了解SIMPLE SWITCHER器件在最大限度简化电源设计方面的历史。1990年SIMPLE SWITCHER团队发布了第一款宽输入电压(Vin)稳压器,连同存储在五寸盘上的软件
基于PEV的双向DC/DC变换器的研究摘要:介绍了一种纯电动汽车超级电容器充放电系统的大功率双向DC/DC变换器。首先给出了纯电动汽车电传动系统的结构图,然后介绍了双向DC/DC变换器的拓扑,并针对超级电容器充放电系统设计双向DC/DC变