精心选择器件和良好的热设计能帮助工程师优化应用于移动设备的超小型DC-DC转换器设计,实现功率密度的增加,同时还保证可靠性。
电源器件的小型化
终端用户需要那些能够提供丰富功能的超小型设备,如手机、便携式媒体播放器(PMP)或全球卫星定位系统(GPS)设备等,这就要求设计人员在启动每个新的电路板设计时,使用更小的元器件。在数字集成电路(IC)方面,贯彻摩尔定律使元器件制造商能够显著减小芯片尺寸,同时还可提高器件性能和集成度。模拟IC的换代产品也提供与它们前一代产品相当或更高的性能,而印刷电路板(PCB)的占位面积更小。电源半导体制造商也在追求小型化,利用更小的占位面积提供更高的功率处理能力,从而提供尽可能最高的功率密度。
然而,追求这个目标为系统设计人员带来了更严格的热管理挑战。电源转换期间损耗的能量以热力的形式释放,而减小元器件的尺寸(与产生的热量有关)会导致工作温度升高。原因很简单,裸片越小,发功率电感散热一体成型电感量的能力就越低。小型化可能带来的不利后果包括低可靠性、不可预测的器件表现以及极端情况下器件的损毁。一般来说,结温越高,器件失效的可能性就越高。
要想在现代便携设备中成功使用超小型电源器件,就需要密切关注元器件和电路板两级,将器件内的发热量降至最低,并确保能够高效地移除热量。
封装创新
为了将生成电感生产的热量减到最少,器件设计人员首先要考虑高的电源转换效率。例如,对于负载点(PoL)稳压器等通用型应用而言,开关转换器就比线性转换器更有优势。最好的开关转换器可以提供95%到97%区间的峰值效率。
为了能够有效地散热,近年来涌现了多款小外形因数的新型电源封装。这些封装经过优化,将裸片与外壳之间的热阻抗降至最低,使热量能够高效地从器件移除。
在针对便携应用的最新封装中,诸如µDFN或µCSP这样的超小型无铅型封装在底部集成了裸露金属焊盘。焊盘向下焊接,将热量直接传导到PCB上。封装尺寸可以是2mmx2mm或更小,这类封装的器件能提供最大1.5 A左右的连续电流。
为了确保以尽可能大的输出电流来实现稳定的工作并将使用寿命延至最长,在采用这些器件进行设计时,工程师需要运用合理的热设计准则,在电路板布线等方面考虑器件厂商的建议。
计算功率耗散
可以用等式1计算开关转换器的功率耗散:
(等式磁芯电感器1)
假定稳压器产生固定的输出电压值,在输出电流最大和效率最低时功率耗散最大;而在环境温度很模压电感高和输入电压最低时会出现能效最低的情况。
分析DC-DC转换器的设计可以论证如何计算最坏情况下必要的功率耗散,并了解功率耗散与封装热阻抗和允许的最高环境工作温度之间有怎样的相关性。
以安森美半导体的NCP1529 DC-DC转换器为例,该器件采用热增强型2mmx2mmx0.5mm µDFN-6封装或3mmx1.5mmx1mm TSOP5封装,适合用于电池供电设备。NCP1529的输入电压范围为2.7V至5.5V,支持单个锂离子电池或3个碱/镍镉/镍氢电池供电,输出电压可在0.9V至3.9V之间调节,最大输出电流为1.0A。此外,IC具有内部热关断电路,防止在结温超过最大值时器件受到灾难性损坏。如果温度达到180℃,器件会被关断,所有功率晶体管和控制电路也将被关断。当温度温度低于140℃时,器件会通过软启动模式重新启动。
当然,最佳的应用设计应当注意降低关断状况发生的潜在机率,首先要做的工作之一便是清晰地了解工作效率。
我们可以考虑这样一款器件:提供1.2V IC内核电压,最高流经900mA的电流。图1显示的是NCP1529在环境温度为85℃、输入电压为2.7V、输出电压为1.2V的条件下不同输出电流时的工作效率。输出电流为0.9A时,器件的工作效率为60%。
图1 Vin=2.7 V、Vout=1.2 V、温度为85℃时的NCP1529能效
WEDM脉冲电源恒流输出双管正激交错DC/DC变换器WEDM用脉冲电源的作用是把工频交流电流转换成一定频率的单向脉冲电流,供给电极放电间隙所需要的能量以蚀除金属。本文提出的电流型电火花线切割加工电源前级电路恒流输出DC/DC变换器,其电路拓扑采用双管正
嵌入式系统在可配置系统中实现模拟I/O随着一种新产品 我们在Missing Link ELECTRONICS公司称之为 智能产品 的面市,嵌入式系统的发展出现了新动向。这一名词源自最近新出现的一个词 智能电话 ,用于描述具有智能电话特性的
Intersil推出最新单芯片USB-C升压-降压电池充电 创新电源管理与精密模拟解决方案领先供应商 Intersil 公司(纳斯达克交易代码:ISIL)近日宣布,推出业内首款支持双向输电的单芯片升压 - 降压电池充电器解决方案 ---ISL9237,其采