式(6)为正,即电感电流在上升。
设UC1=UC2=Ud/2,假定逆变器的工作开关频率较高,在一个开关周期内可认为电压ea基本不变,则滞环控制时补偿电流的波形如图2所示,其中δ为滞环宽度。
由图2,以及式(4)和式(6),可分别计算出电流的上升时间Tu和下降时间Td,即
由式(9)知,逆变器的最小工作频率和最大工作频率分别为
取电流滞环宽度δ为1.2A,直流侧电压Ud为l000V,主电路电感L为5mH,则由上述公式可得:最小开关频率为12.767 kHz,最大开关频率为20.833kHz,贴片电感平均开关频率16.8 kHz。
2.4 直流侧电压的计算和电容的选取
主电路的工作模式及相应的开关系数,如表1所列,等效电路图如图3所示。
当Ka=-1/3时,电流ica上升,即要求如果直流侧电压不能满足大于有源电力滤波器与供电系统连接点的相电压峰伉(Em)的3倍,即
就不会永远成立,这是不希望出现的。
同理,当Ka=1/3时,电流ica下降,即要求
也不会永远成立。
所以直流侧电压应满足如下条件,即
意味着主电路直三相电感器流侧电压值应大于有源电力滤波器与供电系统连接点的相电压峰值(Em)的3倍。在此基础上,直流侧电压值越大,补偿电流的跟随性能越好,但器件的耐压要求也就越高,因此要综合考虑。
由式(15),得
由此可选取直流侧参考电压Udref为1000V。
有源电力滤波器在实际运行时很难将主电路直流侧电压控制在某一恒定值,直流侧电压波动的根本原因在于补偿电流在交流电源与有源电力滤波器之间的能量脉动。若电容值选择过小。主电路直流侧电压波动就会过大,影响有源电力滤波器的补偿效果;而若电容值选择过大,则主电路直流侧电压动态响应变慢,电容体积和价格也会增加。因此必须差模电感综合考虑,合理选择。
假设在某一PwM周期内电容始终处于充电或放电状态,直流侧电容电压最大允许偏离设定值为△Udmax,则
2.5 输出电感值的选取
电压型有源滤波器的补偿特性丰要取决于输出补偿电流对于补偿指令电流的大电流电感跟踪控制能力。而输出电感值直接决定了补偿电流的跟踪速度,从而很大程度地影响电力有源滤波器的工作性能。电感值过大,则系统不能适时跟踪指令电流信号,而且电感值的增大也会造成设备成本的增加;反之。如果太小,则补偿后的纹波电流过大。因此,设计时必须合理选择主电路交流侧输出电感值。
IR2101驱动MOSFET没有输出如图,在protues中仿真测试IR2101驱动MOSFET,从波形来看,IR2101有输出,但是为什么MOSFET没有打开呢?最后的部分使用1N4007对220V的交流电进行整流后接到N-MOSFET上,求赐教,不胜感激
ARM体系的嵌入式系统BSP的程序设计arm公司在32位RISC的CPU开发领域不断取得突破,其结构已经从V3发展到V6。BSP(Board Support Package)板级支持包介于主板硬件和操作系统之间,其功能与PC机上的BIOS
现场可编程门阵列的供电原理介绍现场可编程门阵列(FPGA)是一种可编程逻辑器件,由成千上万个完全相同的可编程逻辑单元组成,周围是输入/输出单元构成的外设。制造完成后,FPGA可以在工作现场编程,以便实现特定的设计功能。典型设计工作