1 引言
锂是金属中最轻和电电感器厂家势最负的一种元素,锂亚硫酰氯(Li/SOCl2)电池是一种以锂为负极,碳作正极,无水四氯铝酸锂的亚硫酰氯(SOCl2)溶液作电解液的锂电池。Li/SOCl2电池具有比能量高、比功率大、放电电压平稳、储存寿命长等特性,在航天器、水中兵器、导航设备等军事和民用工业中都有广泛的应用。不同电池的比能量与比功率关系如图1所示[1] [2]。从图中可以看出,Li/SOCl2电池是比能量和比功率最高的电池。大型Li/SOCl2电池主要用于不依靠工业电源的军事用途,作为一种无须充电的备用电源,如导弹深井发射时的地面备用电源等,一次锂电池在军事装备中的特殊功能,是其他电池无法替代的[3][4]。
Li/SOCl2电池存在的主要问题是电压滞后与安全问题,其中安全问题是最主要的问题。锂电池在使用过程中发生化学反应,产生热量不能及时有效地散发,就会在电池内部积累热量,引起电池的升温,进一步促使反应的加剧,形成产热与温升的正反馈,当热量积累到一定程度的时候,就有鼓胀、泄漏、着火、爆炸等危险,这种现象被称之为热失控。因此,分析电池的热特性,并有针对性地使用热控措施,迅速导出电池放出的热量,减少电池内部热量积累,防止热失控,保证电池的安全,具有十分重要的意义。
2 Li/SOCl2电池发热机理研究
有关Li/SOCl2电池的发热机理的研究主要侧重于深入了解电池内部化学机理,建立电池热模型,目的是减少电池放电发热量和热流密度。
分别从传热学、电学和化学角度分析,电池热模型有三种不同的形式。
从传热学角度分析,假设单体电池温度内部均匀,应用傅立叶导热定律,可以得出电池热平衡控制方程为[5]
(1)
上式中:为电池密度(kg/m3),cp为定压比热容(J/(kg﹒K)-1),T为电池温度(K),t为时间(s),为导热系数(W/(m﹒K)-1),为单位体积热生成率(W/m电感器市场需求3)。
从电学角度分析,电池发热功率由下式确定[6]
(2)
式中:QT为发热功率(W),I为放电电流(A),Er为开路电压(V),E1为负载电压(V),其中IE1为电池可用功率(W),从工程应用共模电感器的角度分析,电池热控制的主要目的是减少发热功率,而并非减少可用功率。
从化学角度分析,电池发热功率由下式确定[7]: (3)
式中:QP为极化热(W),来源于正负极的极化和电解液阻值升高,是电池优化设计能够降低的主要热量;
QS是由熵变引起的热量(W),电池电极的熵变对电池的电化学和热行为有显著影响,Gu W. B. 建立了热和电化学耦合的模型,对热—电化学交互作用进行了分析,认为在热滥用的情况下,电池温度逐渐升高,电池正极发生热分解,最终导致热失控[8];
QA为化学反应热(W),主要源于金属锂的腐蚀,还包括电池化学副反应。Li/SOCl2电池反应方程式见式(4),此反应是放热反应,除此反应外,Li/SOCl2电池内部其他反应也是剧烈的放热反应。
(4)
由于Li/SOCl2电池寿命可长达10年,电池的自放电反应对电池性能影响很大,所以研究长时间储备后进行放电的Li/SOCl2电池时,QA需要考虑自放电产热。Spotnitz R.M.等建立了Li/SOCl2电池自放电特性的电化学模型,用于预测电池寿命,提高安全系数[9]。
电池的发热是与电化学联系在一起的。Gomadam P. M.建立的锂电池的一维热模型与电化学相关,用于优化螺旋卷绕的锂电池[10]。Surampudi S.等在JPL(美国喷气推进实验室)的报告中分析了Li/SO插件电感Cl2电池的安全因素,认为热机制和化学机制的共同作用使电池发生泄漏或爆炸[2]。
通过以上分析可以发现,三种热模型并不是孤立的,建立电池热模型要综合分析电池热—电—化学的综合作用。
3 电池热物理参数测量
测量电池的热物理参数对电池的热性能分析是十分必要的。将准确的热物理参数用于电池热物理模型,进行数值模拟,可以预测电池热特性,设计和优化电池结构设计和热控制方式。
基于DSP的蓄电池充放电装置研究 在蓄电池生产过程中,为了保证产品质量,常需对成品蓄电池进行几次充放电处理。传统充放电设备通常采用晶闸管作为整流逆变功率器件。装置比较复杂,交流输入、输出的功率因数较低。对电网的谐波污染也比较大。为此
便携式家庭心电检测诊断仪的研制1、引言随着人民生活水平的提高以及社会老龄化程度的加深,心脑血管疾病的发病率呈上升趋势,已成为威胁人类身体健康的杀手之一。因为心脏病的发作具有突发性和随机性,为患者提供普及性心电图机以成为发展的必然趋
凌力尔特推出双输出、低静态电流同步 DC/DC 控 凌力尔特公司 (Linear Technology Corporation) 推出双输出 (升压 + 降压)、低静态电流同步 DC/DC 控制器 LTC7813。该器件级联时,其独立的升压和降压型控制器在输入电压高