2.4 键盘及LCD显示单元
系统采用SPI接口的键盘控制芯片ZLG 72 8与$3C2410A的SPI接口连接,ZLG7289扫描的行线R[2:0】和列线C[7:0】构成矩阵键盘,同时在芯片内部可自动完成扫描、译码、去抖动处理等任务。
S3C2410A内部已经集成工字电感器了LCD 控制器,因此可以很方便地控制各种类型的LCD屏,例如:STN和TFT屏。系统采用Samsung 3.5 反射型TFT液晶LTS350Q1,320 X 240像素,256k色,White LED背光,自带四线式触摸线圈电感屏,可以直接和S3C2410A的触摸屏驱动电路连接,触摸位置直接用CPU内置的ADC电路采样可得。
键盘和LCD连接示意图如图2所示。
3 模糊自整定PID控制算法模块设计
模糊自整定PID控制系统能在控制过程中对不确定的条件、参数、延迟和干扰等因素进行检测分析,采用模糊推理的方法实现PID三个参数 、 f和 的在线自整定。模糊自整定PID控制不仅保持了常规PID控制系统的原理简单、使用方便、鲁棒性较强等特点,而且具有更大的灵活性、适应性、精确性等特性。
模糊自整定PID控制器是在常规PID控制器的基础上建立参数K ,K ,K 与偏差绝对值IE I和偏差变化率 取输入偏差、偏差变化率和输出隶属度函数分别如图3所示。模压电感
绝对值lecI问的二元连续函数关系的控制器。二元函数关系为 ]: = ( ,J j), = 0 ,J ),K = ( JEc})。模糊自整定PID控制器根据不同的 、IEcI在线自整定K, K 和Kd。
对于图3中 的隶属度,当n=p时,a,b分别取一0.3,0.3;当n=i时,a,b插件电感器分别取一0.06,0.06;当n=d时,a,b分别取一3,3。
模糊一PID控制系统为双输人三输出系统,输入量为偏差E和偏差变化率EC,输出量为PID参数 ,K 和 。采用七种不同的模糊语言变量进行描述:负小(NS)、负中(NM)、负3v(NB)、零(Z)、正小(Ps)、正中(PM)、正大(PB),控制规则取为:if E and EC then K ,K, ,根据PID控制的基本原理,结合实际经验,设计模糊控制表如表1所示。
4 系统软件设计
软件部分采用嵌入式Linux操作系统,系统主要流程如图4所示。系统上电启动BootLoader,初始化系统硬件,加载操作系统,将系统带人一个合适的环境。完成系统引导加载后新建一系列线程,包括温度数据采集线程、模糊自整定控制算法线程、输出线程,并且新建线程之间的通信管道FIFO。完成以上工作以后进入主进程,主进程完成的主要工作是:利用S3C2410读入的采样数据,计算偏差和偏差的变化率,将偏差和偏差的变化率作为输入量,再由模糊PID 自整定控制算法得出输出控制量。可通过键盘并利用外部中断来控制是否停止采样,如果停止采样则合并线程,结束应用程序。
采用重心法对经模糊控制规则表所得的 、 和进行反模糊化处理得到精确的值,再将这些值代入如下公式
5 结束语 印刷术的诞生及发展演变遍及世界各地山洞或露天岩壁上、用不同于岩壁 的岩粉浆料直接涂抹或用坚硬锋利的石器直接刻画形 成的岩画、岩刻被认为是人类文明的早期记录,向后 人传达当时人类生存活动和 基于FPGA的LED大屏幕控制系统设计摘要:介绍LED显示屏的工作原理,提出大屏幕LED图文显示屏控制系统MCU+FPGA的设计方案。单片机系统负责接收和存储上位机LED点阵数据,FPGA控制器完成显示数据的转换、动态扫描并驱动大屏幕LE [稳压电源]求整流滤波电感、电容值打算搞一个AC220V转DC220V的电路,想用LC滤波,输出5KW左右
本系统选用高性能ARM9系列处理器S3C2420以及嵌入式Linux操作系统,温度传感器采用基于目前最流行的单总线温度传感器DS 1 8B20,设计并实现了生化分析仪中的一种高精度温度控制器。通过模糊自整定PID控制算法提高了系统的响应速度和控制精度。结果证明,该系统能很好地实现对生化分析仪反应池的温度控制在需要范围内,从而有效地提高了生化分析仪的检测精度和准确度。
但是翻遍了资料,没找到计算公式,求LC的值。
求高人指点公式。
找本基础模电书翻翻说不定能找到
模电戈卫东发表于2016-