1.2.1 IGBT开关器件换流时间
静电除尘用高压电源在工作过程中负载不断变化,输出功率也发生变化,这都将导致负载电压电流的变化,负载电压电流的变化都对IGBT开关器件换流时间有影响。
当负载电流不变时,u越高换流时间越短;当负载电压不变时,负载电流越大,换流时间越长。
1.2.2 工作频率
静电除尘用高压电源的工作频率会跟踪负载谐振频率,而且负载谐振频率变化还比较大。经实际测量,在其它条件不变的情况下,频率为73 kHz时,电流信号滞后于控制信号时间△t=2.14μs,频率为50 Hz时,电流信号滞后于控制信号时间△t=2.25μs。由此可见,频率越高,△t越小,频率越低,△t越大。
l.2.3 电流取样信号的幅度
由于io在谐振点附近是正弦波,它存在过零比较延时,而且延时时间T2或者延时角度θ2除了与器件本身的延时有关外,还与检测的电流幅度有关。假设比较器的过零比较误差电压△U1>0,则延时相位为
式中:KIo为电流霍尔传感器检测输出电压峰值。
经实际测量,在其它条件不变的情况下,当KIo=3 V时,滞后时间△t=2μs,当KI=O.5V时,滞后时间△t=2.26μs,滞后时间与桥臂电流取样信号的幅度成反比。
2 相位跟踪技术的改进
为了保证逆变器工作在谐振状态,必须分析逆变绕行电感器偏离谐振点的特征。经研究发现,当逆变器工作在感性状态或容性状态时,并联在IGBT集电极和发射极的二极管存在续流,只要在D2上方加一个霍尔电流传感器(如图3所示),并根据其输出电压是靠近s,驱动信号的下降沿还是上升沿,就可判断逆变smd电感器器是工作在感性状态还是容性状态。如图4所示,当二极管续流区靠近S2驱动信号的上升沿且驱动信号为高电平时,逆变器工作在感性状态;当二极管续流区靠近S2驱动信号的下降沿且驱动信号为高电平时,逆变器工作在容性状态;当二极管没有续流时,逆变器工作在谐振状态。为了判断逆变器的工作状态,可以取出一个s,驱动信号的二倍频信号f2(这个二倍频信号很容易由锁相环二倍频实现),由图4可以看出,当f2和S2驱动信号都为高电平时,二极管D2存在续流,则逆变器工作在感性状态,当f2为低电平,S2驱动信号为高电平时,二极管D2存在续流扁平型电感,则逆变器模压电感器工作在容性状态。
改进的相位跟踪技术是基于原有PLL锁相环相位跟踪技术,并加入榆测控制电路。通过检测判断逆变器工作在什么状态,并通过PI调节,使其工作在谐振状态。当判断出逆变器工作在容性状态时,降低比较器的比较电压,增大相位补偿时间;当判断出逆变器工作在感性状态时提高比较器的比较电压,减小相位补偿时间,这样反复调节,只要桥臂电流滞后于控制信号的时间不超过控制信号周期的1/4(一般不会超过),就可以保证逆变器始终工作在谐振点附近。其原理框图如图5所示.
一体电感
3 实验结果
根据以上分析,我们利用传统相位跟踪技术和改进后的相位跟踪技术各研制了一台样机,并测出桥臂的电压电流波形,如图6所示。图中方波为桥臂取样电压,正弦波为桥臂取样电流。由图6可知两种方法都可以实现频率自动跟踪,但传统方法经常偏离谐振点工作。而改进后的相位跟踪技术则能保证逆变器工作在谐振点附近。
4 结语
实验证明,利用PLL相位跟踪技术可以实现频率自动跟踪,且具有电路简单、工作可靠等优点,但传统的相位跟踪技术受到lGBT开关换流时间,电源工作频率和桥臂电流取样信号幅度可变的影响。改进后的相位跟踪技术能够克服这些因素的影响,保证逆变器工作在谐振点附近,提高了静电除尘用高压电源的可靠性。
控制策略原理图与混合APF电路图(补偿谐波电流)控制策略原理图(补偿谐波电流)如图所示。对电源电流进行闭环控制,参考电流和实际电流经过电流控制器后输出逆变器电压参考值。然后,利用空间矢量调制(SVPWM)技术得到逆变器的开关信号,控制混合APF进行
反激式转换器简化隔离式电源设计引言曾经需要一个简单的低功率隔离式内务处理电源、又不想买现成有售的砖或模块吗?制造或购买决策取决于很多因素,但是简单性、解决方案尺寸、价格和性能对于走哪条路有重大影响。包括某些医疗系统在内的几种类型应
文艺复兴时期音乐印刷发展述要音乐印刷术大抵始于1473年前后,常常应用于带有圣咏乐谱的宗教礼仪书籍之中。在15世纪晚期,出现木版刻制版印刷音乐谱符的情形,用于基本理论书或教科书的印制。1498年,出生于福松