图3中,实线和虚线分别为为系统(1)和(2)的波形或轨迹。
从图3看出,该系统的信号波形或解的轨迹由两个不同的部分构成。当系统的解x≥m=0.2时,u(x-m)=1,混沌系统(3)为混沌系统(2)的结构;当系统的解x<m=0.2时,u(x-m)=0,式(3)变为混沌系统(1)的结构,如此往复变化。虽然在这种结构变化中的门限为一确定值,但由于混沌的不可预测性导致何时达到这一门限足无法预知的,即这种结构随时间而变化的贴片电感规律是无法预知的,也是随机的。
这种由两个不同的混沌信号按时间随机地混杂在一起而形成的一个完整的混沌信号,比之由单一混沌系统产牛的信号要复杂得多,且门限参数本身又是一种密钥参数,它扩展了奇力新电感混沌伪随机序列的密钥空间,使其提高了安全性。
2 伪随机序列发生器设计及性能分析
基于上述的变结构混沌系统可设计一种新的伪随机序列发牛器。主要思路是以变结构混沌系统作为随机信号源,采用一定的方法对其离散、量化,获得一系列的伪随饥序列。
这里研究的变结构混沌系统是一个非线性常微分方程组,在数字系统中对其进行数值解就是一种离散的方法。常微分方程近似求解的数值方法有欧拉算法、改进型的欧拉算法和龙格库塔法等,这都是将连续系统进行近似离散化的方法。其中,欧拉算法速率最快,本文采用欧拉算法将连续混沌离散化。对于一个连续的混沌系统,有:
当τ足够小时,经过欧拉算法离散化后的系统具有与式(3)所示的连续混沌系统相同的动力学特性,此处选择τ=0.004。
在数字系统中迭代求解式(8)所示的离散化系统,迭代过程中的每一个解变量xn,yn和zn都可以通过二进制数据的方式来表示。以xn为例:
式中:b1n,b2n,…,b(k+1+l)n分别为二进制数的所有位(0或1),混沌系统的解xn随时间不断变化,其二进制表达式中的每一位bm(“0”或“1”)也随时间小断变化。如果抽取随时间变化的一位或多位,可构成一个由“0”或“1”组成的伪随机序列。为了保证提取的序列具有较好的随机性,可以严格地从小数部分中提取其中一位作为随机序列,也可以从{b1n,b2n,…,b(k+1+l)n}中选取随机性能较好的多位作为随机序列,从而增加随机序列的提取速度。这种量化方法可用图4表示。
式(5)~式(9)描述了混沌伪随机序列发生器设计的核心算法。实现一个混沌伪随机序列发生器可借助于软件和硬件平台。如果为计算机或其他软件提供伪随机序列,可借助数字计算机这个性能完善的平台实现式(5)~式(9)的运算,如可用Matlab,C语言等软件实现一个混沌伪随机序列发生器。也可结合实际应用在相关信号处理软硬件平台上实现混沌伪随机序列发生器,如利用DSP芯片对语音或视频信号进行混沌加密,可在DSP内进行上述运算而实现混沌伪随机序列发生器,也可利用FPGA硬件平台实现这种伪随机序列发生器。本文不侧重利用何种平台,如何实现混沌伪随机序列发生器,而是着重基于上述变结构混沌系统的伪随机序列发生器性能的测试。为此,选择Matlab求解变结构混沌系统,通过实现式(5)~式(9)的运算产生一系列伪随机序列,提取序列并进行序列的随机性统计测试。
描述一个序列随机性统计性能的指标有多种,但目前应用最广的是NIST(National Institute of Standardsand Technology,美国国家技术与标准局)标准。NIST推出2.0版本的测试软件包STS是当前最具权威的一种随机性检测工具,它为研究人员提供了一种量化的报告,显式地说明一个伪随机序列性能的好坏。STS-2.0b是当前最新的软件包版本,由十五项核心测试指标组成。
传统印刷面临的挑战中国当代社会对印刷品的需求仍持续增长,2009年国内印刷复制业总产值达到5 746亿元.位居世界第三位。然而印刷企业受备方面因素的影响,盈利能力减弱、利润不高,已进入微利时期。
贴片电感的参数有哪些? 电路是由电线和电子元器件组成的,不同的线路所需求的贴片电感的参数都不尽相同,贴片电感的主要参数有电感量、允许偏差、分布电容、额定电流及品质因数等。
1.
请教一个关于C674X megamodule power down 的问HI,大家好
请教一个C674x megamodule power down 的问题:
The entire C674x megamodule can be powered-down using the following procedure. Other than the
options pre